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Inherited process context that is not validated like other inputs can introduce vulnerability.

Description
It is necessarily the case that when a program starts execution, it inherits an execution context that is
potentially malicious. The only parts of the execution context that can be malicious are those aspects that are
both dynamic and subject to influence by an adversary. That is, anything that an invoking adversary could
change offers the potential of being a trap for the program. Static aspects of the execution environment are
accommodated in the normal engineering approaches.

The only approach to this situation is to design a protocol to establish trust in the context. This includes

• correcting or discarding aspects of the context

• validating those aspects of the context that cannot be corrected

Note that the adversary can change some aspects of the execution context while the program is running. That
is not covered here. Those are generally considered time and state problems.

Dynamic Assembly
Many operating systems and programming languages support assembly of executable programs immediately
before or during execution. The pieces from which the ultimate executable is composed must be acquired
from many places. The most common are

• files from local filesystems

• files from remote (network) filesystems

• files from web, code, or application servers on the network

The specific locations for these component files are generally configured into the operating systems
or runtime environments of the programming languages. In some cases, these locations are incorrectly
configured or can be fooled into loading pieces from vulnerable locations—locations where adversaries can
pre-position maliticous code.

Environments where this has been known to occur include the following:

• Virtually all modern UNIX operating systems have support for shared object libraries. An adversary
may be able to fool the system into loading a shared library before or instead of those the engineer of
the program expects.

• All modern versions of Microsoft Windows operating systems have support for dynamically loaded
libraries. As in the case of UNIX, adversaries may be able to load their DLLs before or instead of those
expected.

• Many modular scripting languages, including

• PERL,

• Ruby, and

• Python.
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• Java and .NET include dynamic assembly is an integral part of the platforms themselves. That is,
while most of the execution environments described above use dynamic assembly for efficiency, Java
and .NET use it functionally. Consequently, it cannot be avoided.
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